Exercise 71

Show that the function

$$
f(x)= \begin{cases}x^{4} \sin (1 / x) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

is continuous on $(-\infty, \infty)$.

Solution

The rational function $1 / x$ is continuous at all $x \neq 0$ by Theorem 7 , the sine of $1 / x$ is continuous at all $x \neq 0$ by Theorem $9, x^{4}$ is continuous at all $x \neq 0$ by Theorem 7 , and the product $x^{4} \sin (1 / x)$ is continuous at all $x \neq 0$ by Theorem 4. All that's left to show is that there's continuity at the point where the function changes:

$$
\lim _{x \rightarrow 0} f(x)=f(0),
$$

that is,

$$
\lim _{x \rightarrow 0} x^{4} \sin (1 / x)=0
$$

Evaluate the left side.

$$
\begin{aligned}
\lim _{x \rightarrow 0} x^{4} \sin \left(\frac{1}{x}\right) & =\lim _{x \rightarrow 0} \frac{x^{3}}{\frac{1}{x}} \sin \left(\frac{1}{x}\right) \\
& =\lim _{x \rightarrow 0} x^{3}\left[\frac{\sin \left(\frac{1}{x}\right)}{\left(\frac{1}{x}\right)}\right] \\
& =\left(\lim _{x \rightarrow 0} x^{3}\right)\left[\lim _{x \rightarrow 0} \frac{\sin \left(\frac{1}{x}\right)}{\left(\frac{1}{x}\right)}\right]
\end{aligned}
$$

For the limit in square brackets, make the substitution $u=1 / x$. Then as $x \rightarrow 0, u \rightarrow \pm \infty$.

$$
\begin{aligned}
\lim _{x \rightarrow 0} x^{4} \sin \left(\frac{1}{x}\right) & =\left(\lim _{x \rightarrow 0} x^{3}\right)\left(\lim _{u \rightarrow \pm \infty} \frac{\sin u}{u}\right) \\
& =\left(\lim _{x \rightarrow 0} x\right)^{3}\left(\lim _{u \rightarrow \pm \infty} \frac{\sin u}{u}\right) \\
& =(0)^{3}(0) \\
& =0
\end{aligned}
$$

Therefore, $f(x)$ is continuous on $(-\infty, \infty)$.

